Photochemical Reactions of 9-(ω-Anilinoalkyl)-10-bromophenanthrenes

Akira Sugimoto,* Ryoichi Hiraoka, Noriyuki Fukada, Hiromi Kosaka and Hiroo Inoue
Department of Applied Chemistry, University of Osaka Prefecture, Gakuencho 1-1, Sakai, 593, Japan

Irradiation of the title compounds $\operatorname{Ar}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NHPh}(\mathrm{Ar}=10$-bromo-9-phenanthryl, $n=3,4,5,6$, 10) gave debrominated aniline derivatives in all cases. For $n=3$ and 4, the cyclic compounds $4 \mathbf{a}, \mathbf{b}$ were isolated in moderate yields. A photo-induced electron-transfer mechanism is proposed.

We reported earlier that irradiation of 9-(3-anilinopropyl)phenanthrene $\mathbf{1}$ in benzene affords the spiro compound $\mathbf{2}$ by an intramolecular addition of the $\mathrm{N}-\mathrm{H}$ function to the phenanthrene ring (Scheme 1), ${ }^{1}$ a reaction for which we

Scheme 1
proposed a mechanistic pathway proceeding via an exciplex intermediate formed by interaction between the excited phenanthrene moiety and the anilino group; the interaction between the two chromophores serves to bring them into favourable positions for cyclisation. We have attempted to form nitrogen heterocycles in this way and here we describe the photochemical reaction of 9-(ω-anilinoalkyl)-10-bromophenanthrenes $3 \mathrm{a}-\mathbf{e}$, in which the anilino group may undergo intramolecular cyclisation to the 10 -position of the phenanthrene ring. ${ }^{2}$

$3 a-$

Results and Discussion

9-(ω-Anilinoalkyl $)$-10-bromophenanthrenes 3a-e.-9-(ω bromoalkyl)phenanthrenes ($n=3,4,5,6,10$), prepared from dibromoalkanes and phenanthryllithium,* when treated with bromine gave 10-bromo-9-(ω-bromoalkyl)phenanthrenes which were converted into the title anilinoalkyl derivatives 3a-e by reaction with aniline in the presence of potassium carbonate. The position of bromination of the phenanthrene ring was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy: i.e. disappearance of 10 $\mathrm{H}(\mathrm{s})$; downfield shift of $1-\mathrm{H}$ to $\delta_{\mathrm{H}} 8.4-8.5$ by bromination at the peri-position; and similarity of the aromatic signal patterns to those of 9-bromo-10-methylphenanthrene. \dagger^{+3}

[^0]Photoreaction.-A de-gassed solution of each of compounds 3a-e, in a sealed Pyrex tube, was irradiated at a distance of 5 cm from a 300 W high-pressure mercury lamp. Hydrogen bromide generated in the photoreaction was captured by diethyl- or triethyl-amine added to the solution. The reaction products were separated by column chromatography. Although five or more products were detected by TLC, those identified were the debrominated compounds 1 and $\mathbf{5 b - e}$, spiro compounds $\mathbf{2 , 6 b}, \mathbf{c}$, and the expected cyclic compounds $\mathbf{4 a}, \mathbf{b}$ (Scheme 2). The structures of compounds $\mathbf{1 , 5 b - e}, \mathbf{2}$ and $\mathbf{6 b}$ were determined by spectral comparison with those of the corresponding authentic specimens. ${ }^{1}$

The structure of compound $6 \mathbf{c}$ was determined by comparison of its NMR spectrum with that of the authentic compound (prepared by the photoreaction of amine 5 c); its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to those of 2 and $\mathbf{6 b}$. In particular, the $4-$ and $5-\mathrm{H}$ signals of the phenanthrene ring at $\delta c a$. 8.7 were not observed, indicating formation of the $9,10-$ dihydrophenanthrene. Moreover, the AB quartet signals (probably $10-\mathrm{H}$ of the 9,10 -dihydrophenanthrene moiety) were observed at $\delta 2.72$ and 4.10. Compound 6c was easily converted into the aniline derivative $\mathbf{5 c}$ by treatment with acid, this being characteristic of the spiro compounds $\mathbf{2}$ and $\mathbf{6 b}$.

The structures of $\mathbf{4 a , b}$ were determined from spectral data (see Experimental section); the signals at $\delta_{\mathbf{H}} 8.62-8.70$ (mult) indicated the presence of a phenanthrene ring. The spectrum of 4b showed $\delta_{\mathrm{H}} c a .6 .6$ and $7.1(\mathrm{br} \times 2, \mathrm{ArH})$ at room temperature; these sharpened at $50^{\circ} \mathrm{C}$. In contrast the signals of the aliphatic protons $\left(8 \times\right.$ mult at $\left.27^{\circ} \mathrm{C}\right)$ were broad at $50^{\circ} \mathrm{C}$, suggesting a restricted flipping motion of the tetrahydroazepine ring.

The structure of 4 -(9-phenanthryl)but-1-ene 7 was determined by comparing its spectral characteristics with those of an authentic specimen. ${ }^{4}$

Yields for the isolated photoproducts and the recovery of unchanged materials are shown in Table 1. A solution of each of compounds $3 \mathrm{a}-\mathrm{e}$ in refluxing toluene ($0.016 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was unchanged after 24 h , an indication that the products in Table 1 are formed only by the photoreaction. The expected cyclic compounds were obtained only in the photoreactions of $\mathbf{3 a}$ and 3b (Scheme 2). Diethyl- and triethyl-amine were effective in raising the yields of $\mathbf{4 a , b}$ by capturing HBr generated in the reactions; in their absence HBr must be captured by the starting material. Use of tetrahydrofuran (THF) as solvent increased yields of the debrominated compounds and decreased recovery of the starting materials, non-isolable compounds being formed. In the case of 3 c , the phenanthrylbutene 7 was produced ($2-6 \%$) together with $5 \mathbf{c}$ and $\mathbf{6 c}$ (Scheme 2). The photoreaction of $3 \mathbf{e}$ ($n=10$) (Scheme 2) resulted in a decreased yield of the debrominated compound $\mathbf{5 e}$, although non-isolable compounds were produced. The spiro compounds, obtained from 3a-c in low yields, may be formed by photocyclisation of the debrominated compounds 1 and $\mathbf{5 b}, \mathbf{c}{ }^{1}$

Scheme 2

The photo-debromination ${ }^{5}$ suggests that the reaction proceeds by photoinduced electron-transfer from the anilino group to the phenanthrene moiety. A possible pathway for the formation of the intended cyclic compounds $4 \mathbf{a}, \mathbf{b}$ and the butene derivative $\mathbf{7}$ is proposed in Scheme 3. The excitation of $\mathbf{3 a - c}$ is considered to bring about an intramolecular electron-transfer from the anilino group to the excited phenanthrene moiety to form $8 \mathbf{a}-\mathrm{c}$. The heterolytic cleavage of the $\mathrm{C}-\mathrm{Br}$ bond of $\mathbf{8 a - c}$, accompanied by deprotonation with base, gives compounds $9 \mathbf{a}-$ c. For $n=3$ and 4 , the radical coupling of $\mathbf{9 a , b}$ gives $\mathbf{4 a , b}$ and for $n=5$, the intramolecular abstraction of hydrogen from the methylene chain of 9 c to form 10 c , followed by the β-fission of the 1,4 -biradical, gives 7 . The abstraction of hydrogen by $9 \mathrm{a}-\mathrm{c}$ from the methylene group of other molecules or THF as a

10c
solvent brings about the formation of $5 \mathbf{5 a - c}$. Compounds $5 \mathrm{~d}, \mathrm{e}$ also may be produced by a similar process to that in the formation of $5 \mathrm{a}-\mathrm{c}$.

As described above, it became apparent that the photoinduced intramolecular cyclisation of $\mathbf{3 a}-\mathbf{3 e}$ is governed by the length of the methylene bridge and the best yield of the cyclic compound is achieved for $n=3$.

Experimental

M.p.s were determined with a Yanaco micromelting point apparatus (MP-500) and are uncorrected. UV spectra were recorded on a Shimadzu UV-160A spectrophotometer. IR spectra were obtained on a Hitachi 215 spectrophotometer. NMR spectra were recorded on a JNM-GX270 (270 MHz) spectrometer using tetramethylsilane as internal standard; J values in Hz . Mass spectra were obtained on a Shimadzu-KLB 9000 gas chromatograph-mass spectrometer.
ω-(9-Phenanthryl)alkyl Bromides.-These were prepared according to the method described in an earlier paper. ${ }^{1}$ Yields, m.p.s, and analytical data are shown in Table 2.

Bromination of ω-(9-Phenanthryl)alkyl Bromides.-To a solution of the bromide in carbon tetrachloride was added dropwise a solution of bromine in the same solvent at room temperature. After the mixture had been stirred for 2 h , the solvent was removed by distillation under reduced pressure and the residue was chromatographed to give the 10 -bromophenanthrene. The structures were confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

9-(ω-Anilinoalkyl)-10-bromophenanthrenes 3a-e.-A general procedure is given for the preparation of the phenanthrene 3c and yields, m.p.s, and analytical data are shown in Table 3.

Table 1 Photochemical reactions of 3a-e ${ }^{a}$

Compound	Additive	Solvent	Product (yield) ${ }^{\text {b }}$ (\%)	Recovered 3 (\%)
3a	None	PhH	4a (17), 1 (10), 2 (2)	54
	$\mathrm{Et}_{2} \mathrm{NH}$	PhH	4a (39), 1 (11), 2 (trace)	28
	$\mathrm{Et}_{3} \mathrm{~N}$	PhH	4a (29), 1 (10), 2 (trace)	22
	$\mathrm{Et}_{2} \mathrm{NH}$	THF	4a (11), 1 (15), 2 (9)	12
3b	None	PhH	4b (10), 5b (9), 6b (trace)	59
	$\mathrm{Et}_{2} \mathrm{NH}$	PhH	4b (12), 5b (4), 6b (5)	27
	$\mathrm{Et}_{2} \mathrm{NH}$	THF	4b (11), 5b (17), 6b (8)	17
3c	$\mathrm{Et}_{2} \mathrm{NH}$	PhH	7 (5), 5c (12), 6c (trace)	34
	$\mathrm{Et}_{3} \mathrm{~N}$	PhH	7 (2), 5c (6), 6c (0)	37
	$\mathrm{Et}_{2} \mathrm{NH}$	THF	7 (6), 5c (15), 6c (3)	8
3d	None	PhH	5 d (10)	43
	$\mathrm{Et}_{2} \mathrm{NH}$	PhH	5d (14)	35
3 e	None	PhH	5 e (8)	56
	$\mathrm{Et}_{2} \mathrm{NH}$	PhH	5 e (3)	59

${ }^{a}$ Irradiation for 5 h in a sealed tube; molar ratio additive: $\mathbf{3}=3: 1 .{ }^{b}$ Isolated.

Table 2 Data for $9-\mathrm{C}_{14} \mathrm{H}_{9}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{Br}$

Formula	M.p. (${ }^{(} \mathrm{C}$)	Yield ${ }^{\text {a }}$ (\%)	Found (required) (\%)		$\delta_{\text {H }}$	
			C	H	$\left(\mathrm{CH}_{2}\right)_{n}$	ArH
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}$	60-62	21	67.95 (68.2)	4.9 (5.05)	2.32-3.54	7.55-8.77
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}$	114.5-116.5	42	69.1 (69.0)	5.6 (5.5)	1.95-3.51	7.54-8.77
$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Br}$	72-74.5	76	69.6 (69.7)	5.9 (5.85)	1.60-3.45	7.54-8.76
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Br}$	88.5-90	82	70.1 (70.4)	6.2 (6.2)	1.47-3.44	$7.56-8.76$
$\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Br}$	79-80.5	57	72.6 (72.5)	7.5 (7.4)	1.26-3.42	7.54-8.75

${ }^{a}$ Based on 9-bromophenanthrene.

Table 3 Data for phenanthrenes 3a-e

Compound (formula)	Yield ${ }^{a}(\%)$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Found (required) (\%)		
			C	H	N
3a ($\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NBr}$)	50	131.5-133.5	70.5 (70.78)	5.4 (5.16)	3.55 (3.59)
$3 \mathrm{~b}\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NBr}\right)$	73	96-97.5	71.35 (71.29)	5.5 (5.48)	3.6 (3.46)
$3 \mathrm{c}\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NBr}\right)$	54	88-91	71.9 (71.77)	5.7 (5.78)	3.6 (3.35)
$3 \mathrm{~d}\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NBr}\right)$	59	110.5-112	72.2 (72.22)	6.0 (6.06)	3.0 (3.24)
$3 \mathrm{e}\left(\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NBr}\right)$	61	64-66	73.55 (73.76)	7.1 (7.02)	2.9 (2.87)

${ }^{a}$ Based on the corresponding 9-(ω-bromoalkyl)phenanthrene.

A mixture of aniline ($28 \mathrm{~cm}^{3}, 0.3 \mathrm{~mol}$), potassium carbonate ($1.7 \mathrm{~g}, 12.4 \mathrm{mmol}$), and 10 -bromo- 9 -(5 -bromopentyl)phenanthrene [prepared by the reaction of 9 -(5 -bromopentyl)phenanthrene ($4.35 \mathrm{~g}, 13.3 \mathrm{mmol}$) and bromine ($0.75 \mathrm{~cm}^{3}, 14.6 \mathrm{mmol}$) in tetrachloromethane $\left(60 \mathrm{~cm}^{3}\right)$] was stirred for 30 h under argon at room temperature. The reaction mixture was washed with a mixture of benzene* and water, and the benzene layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and distilled under reduced pressure almost to dryness. Chromatography of the residue gave 9-(5-anilinopentyl)-10-bromophenanthrene $\quad 3 \mathrm{c}$; $\lambda_{\text {max }}$ (hexane)/nm $257(\log \varepsilon 4.78), 291$ (4.14) and 303 (4.16); $v_{\max } / \mathrm{cm}^{-1} 3400$ $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.65-1.85\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.15-5.20(2 \mathrm{H}, \mathrm{t}$, CH_{2}), 3.42-3.48 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), 3.64 (1 H , br s, NH), 6.59-6.72 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.14-7.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.62-7.72 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 8.10-8.14$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 8.48-8.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 8.66-8.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

9-(3-Anilinopropyl)-10-bromophenanthrene 3a. $\lambda_{\max }$ (cyclohexane)/nm 258 ($\log \varepsilon 4.78$), 292 (4.16) and 304 (4.15); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04-2.15(2 \mathrm{H}, \mathrm{m}$,

[^1] solvent for the aniline derivatives.
CH_{2}), 3.35-3.40 (2 H, t, CH $)_{2}$, 3.53-3.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.79 (1 $\mathrm{H}, \mathrm{brs}, \mathrm{NH}), 6.65-6.74(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.16-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.57-7.71 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.08-8.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.47-8.51 (1 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.66-8.74(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

9-(4-Anilinobutyl)-10-bromophenanthrene $3 \mathrm{bb} . \quad \lambda_{\max }$ (cyclohexane)/nm $258(\log \varepsilon 4.83), 292$ (4.21) and 304 (4.21); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3375(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.85-1.93(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.22-3.27 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), 3.45-3.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.65(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 6.61-6.73(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15-7.21(2 \mathrm{H}, \mathrm{m}$, ArH), $7.60-7.71(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.09-8.13(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.47-$ $8.51(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.65-8.74(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

9-(6-Anilinohexyl)-10-bromophenanthrene 3d. $\lambda_{\text {max }}$ (hexanes)/nm $225(\log \varepsilon 4.45), 257(4.78), 291$ (4.14) and 303 (4.16); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3350(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad 1.4-1.83$ (8 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.11-3.16 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), 3.40-3.46 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), $3.61(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 6.58-6.71(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.13-7.21(2 \mathrm{H}, \mathrm{m}$, ArH), 7.61-7.71 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.08-8.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.46$8.52(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.64-8.74(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

9-(10-Anilinodecyl)-10-bromophenanthrene 3e. $\lambda_{\max }$ (hexanes)/nm $226(\log \varepsilon 5.46), 257$ (5.78), 292 (4.14) and 303 (4.16); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3390(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34-1.80(16 \mathrm{H}, \mathrm{m}$, CH_{2}), 3.07-3.13 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}$), $3.38-3.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.59(1$ $\mathrm{H}, \mathrm{brs}, \mathrm{NH}), 6.58-6.71$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.13-7.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$),
7.61-7.71 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.11-8.14 (1 H, m, ArH), 8.46-8.51 (1 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.64-8.74$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Photoreactions.--Preparative irradiation. Argon was bubbled through a solution of the sample compound $\left(1.6 \times 10^{-2} \mathrm{~mol}\right.$ dm^{-3}) and diethylamine in benzene in a Pyrex vessel for 30 min after which the solution was irradiated with a 300 W highpressure mercury lamp with continued passage of argon. After irradiation, the mixture was filtered to remove diethylammonium bromide and the filtrate evaporated under reduced pressure. The residue was chromatographed on silica gel with benzene-hexane ($1: 1, \mathrm{v} / \mathrm{v}$).

Photoreaction of 3a. After irradiation for $1.5 \mathrm{~h} \mathrm{3a}(312 \mathrm{mg})$ and diethylamine (70 mg) in benzene ($50 \mathrm{~cm}^{3}$), the mixture was filtered (ca. $80 \mathrm{mg}, 65 \%$, of diethylammonium bromide, identified from its IR spectrum, was obtained) and the filtrate evaporated under reduced pressure. Chromatography of the residue gave a mixture of 1,2,3,4-tetrahydro-1-phenyldibenzo $[f, h]$ quinoline $4 \mathbf{4}$ and 1^{\prime}-phenylspiro[9,10-dihydrophen-anthrene-9,2'-pyrrolidine]2 (125 mg) [6:1 molar ratio, estimated by NMR, i.e. yields $\mathbf{4 a}(43 \%)$ and $2(8 \%)]$. The pure quinoline derivative $4 \mathbf{4}$ was obtained by the slow addition of hexane to a benzene solution of the mixture; m.p. 202$204{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 89.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.5 . \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}$ requires C , 89.28; H, 6.19; N, 4.53\%); $\lambda_{\text {max }}$ (hexane)/nm 245infl, 254 $(\log \varepsilon 4.69), 265 \mathrm{sh}, 280$ sh and $323(4.05) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.98-$ $2.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.91-3.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.89-3.94(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$), 6.87-6.92 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.13-7.19$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.29-7.36 (1 H, m, ArH), 7.46-7.66 (3 H, m, ArH), 7.80-7.83 $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.00-8.03(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.62-8.70(2 \mathrm{H}$, m, ArH).

The second fraction yielded starting amine 3 a ($108 \mathrm{mg}, 35 \%$ recovery) and the third a mixture of unidentified compounds.

Photoreaction of $\mathbf{3 b}$. A solution of amine [$\mathbf{3 b}(609 \mathrm{mg})$ and diethylamine (141 mg) in benzene ($100 \mathrm{~cm}^{3}$)] was irradiated for 1.5 h and then diethylammonium bromide ($c a .100 \mathrm{mg}, 43 \%$) was removed.

The first chromatographic fraction gave 2,3,4,5-tetrahydro-1-phenyl-1 H-phenanthro $[9,10-b]$ azepine $\mathbf{4 b}(91 \mathrm{mg}, 19 \%$), m.p. 215-217 ${ }^{\circ} \mathrm{C}$ (from hexane-benzene) (Found: C, 88.9; H, 6.5; N, 4.2. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}$ requires $\mathrm{C}, 89.13 ; \mathrm{H}, 6.54 ; \mathrm{N}, 4.33 \%$; $\lambda_{\text {max }}($ hexane $) / \mathrm{nm} 250 \mathrm{infl}, 257$ (log $\varepsilon 4.81$), 268sh, 278 (4.11), 290 (4.07), 302 (4.09) and $335(3.45) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.47-1.73(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.04-2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.77-2.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.24$ $3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.31-4.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.2-7.3(5 \mathrm{H}, \mathrm{m}$, ArH), 7.44-7.71 (4 H, m, ArH), 7.87-7.90 (1 H, m, ArH), 8.19$8.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.71-8.81(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

The second fraction gave 1^{\prime}-phenylspiro[9,10-dihydro-phenanthrene-9,2'-piperidine] 6b ($53 \mathrm{mg}, 11 \%$). The third fraction contained the starting amine $\mathbf{3 b}(346 \mathrm{mg}, 57 \%$), and successive elution with benzene-methanol gave a mixture of the other unidentified products.

Irradiation in a sealed tube (Table 1). A solution of the sample compound ($1.6 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$) in a Pyrex tube was de-gassed by three freeze-pump-thaw cycles under argon, and the tube was sealed under reduced pressure. The solution was irradiated externally with a 300 W high-pressure mercury lamp using a merry-go-round apparatus (Eikosha PIH-300). After irradiation, the same procedure as the case of preparative irradiation was carried out.

Photoreactions of 3a and 3b. Debrominated amine 5a (or 5b) was obtained from the eluent after the fraction containing the unchanged amine. In the preparative irradiation described above, 5a and $\mathbf{5 b}$ were converted into the corresponding spiro compounds owing to the intense light.

Photoreaction of 3c. After irradiation [3c (140 mg) and diethylamine (72 mg) in benzene $\left.\left(20 \mathrm{~cm}^{3}\right)\right]$, the solvent was evaporated under reduced pressure.

The first chromatographic fraction eluted with benzenehexane (1:1) gave 4-(9-phenanthryl)but-1-ene 7 ($4 \mathrm{mg}, 5 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.55-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.19-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $5.02-5.18\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 5.92-6.07(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 7.54-7.69(5$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.81-7.85(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.08-8.13$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.65-8.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction contained 1^{\prime}-phenylspiro[9,10-dihydro-phenanthrene-9,2'-azepane] 6c (trace, detected by NMR spectrum.

The third fraction gave unchanged amine 3 c ($48 \mathrm{mg}, 34 \%$) and the fourth yielded compound $5 \mathrm{c}(13 \mathrm{mg}, 12 \%)$.

Photoreaction of 3d. After irradiation [3d (134 mg) in benzene $\left.\left(20 \mathrm{~cm}^{3}\right)\right]$, the solvent was removed under reduced pressure. The first chromatographic fraction eluted with benzene-hexane ($1: 1$) gave unchanged amine 3d ($57 \mathrm{mg}, 43 \%$). The second eluent contained compound $5 \mathbf{d}(11 \mathrm{mg}, 10 \%$).

Photoreaction of $\mathbf{3 e}$. By the same procedure as for 3d, unchanged amine ($83 \mathrm{mg}, 56 \%$) and compound $5 \mathrm{e}(10 \mathrm{mg}, 8 \%$) were obtained from the starting amine $3 \mathrm{e}(148 \mathrm{mg})$.

Authentic Compounds

Spiro Compound 6c.-Irradiation of 9-(5-anilinopentyl)phenanthrene 5c. The photoreaction was carried out in a sealed tube as described above. Compound 6 c was obtained from the first chromatographic fraction with benzene-hexene (1:1) (15% yield), m.p. 152-156 ${ }^{\circ} \mathrm{C}$ (hexane) (Found: C, $88.2 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.3$. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}$ requires $\mathrm{C}, 88.45 ; \mathrm{H}, 7.42 ; \mathrm{N}, 4.12 \%$); $\lambda_{\text {max }}($ hexane)/nm 211 (log ε 4.72), 260 (4.47) and 300sh; $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{2}\right) 1.54-1.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.80-2.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.72(1 \mathrm{H}, \mathrm{ABq}, J 16.5, \mathrm{CH}), 3.76-3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.10(1 \mathrm{H}$, $\mathrm{ABq}, J 16.5, \mathrm{CH}), 6.58-6.69(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.96-7.03(2 \mathrm{H}, \mathrm{m}$, ArH), 7.12-7.32 (6 H, m, ArH) and 7.77-7.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $339\left(\mathrm{M}^{+}\right)$. The second chromatographic fraction gave the unchanged amine (23%).

4-(9-Phenanthryl)but-1-ene 7.-To a solution of potassium tert-butoxide ($210 \mathrm{mg}, 1.9 \mathrm{mmol}$) in dimethyl sulfoxide (DMSO) $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of 4-(9phenanthryl)butyl bromide ($380 \mathrm{mg}, 1.2 \mathrm{mmol}$) in DMSO (4 cm^{3}) with stirring; after 5 min , the reaction mixture was poured into ice-water ($60 \mathrm{~cm}^{3}$), and then extracted with benzene. The benzene solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. Purification by chromatography yielded the title butene 7 ($148 \mathrm{mg}, 53 \%$), m.p. $46.5-47.5^{\circ} \mathrm{C}$ (from methanol) (Found: C, 93.1; H, 6.95. $\mathrm{C}_{18} \mathrm{H}_{16}$ requires $\mathrm{C}, 93.06 ; \mathrm{H}, 6.94 \%$); $\lambda_{\max }($ hexane $) / \mathrm{nm} 253$ ($\log \varepsilon 4.76$), 276 (4.14), 286 (4.02) and 297 (4.07).

9-(ω-Anilinoalkyl)phenanthrenes 5a-e.-These aniline derivatives were prepared as for the amines $\mathbf{3 a}$-e. Amines $5 \mathbf{a}$ and 5b were prepared by the method described in ref. 1.

9-(5-Anilinopentyl)phenanthrene 5c. M.p. $\quad 103.5-105.5^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{1} 101.5-103{ }^{\circ} \mathrm{C}$).

9-(6-Anilinohexyl)phenanthrene 5d. Obtained from the corresponding bromide (92%), m.p. $74.5-76.5^{\circ} \mathrm{C}$ (hexane) (Found: C, $88.5 ; \mathrm{H}, 7.9 ; \mathrm{N}, 3.8 . \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}$ requires $\mathrm{C}, 88.34 ; \mathrm{H}$, $7.70 ; \mathrm{N}, 3.96 \%$; ; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3375(\mathrm{NH}) ; \lambda_{\text {max }}($ hexane $) / \mathrm{nm}$ $253(\log \varepsilon 4.81)$ and $298(4.12) ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 1.43-1.67(6 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.79-1.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.09-3.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.59$ (1 H, br s, NH), 6.57-6.71 (3 H, m, ArH), 7.13-7.20 (2 H, m, ArH), 7.54-7.68 (5 H, m, ArH), $7.80-7.84(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.08-$ $8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.64-8.76(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 353$ $\left(\mathrm{M}^{+}\right)$.
9-(10-Anilinodecyl)phenanthrene 5e. Yield 73%, m.p. $67-71^{\circ} \mathrm{C}$ (from hexane-benzene) (Found: $\mathrm{C}, 88.0 ; \mathrm{H}, 9.1 ; \mathrm{N}, 3.4 . \mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}$ requires $\mathrm{C}, 87.97 ; \mathrm{H}, 8.61 ; \mathrm{N}, 3.42 \%$); $\lambda_{\max }($ hexane $) / \mathrm{nm} 252$ (log
\& 4.78) and $298(4.19) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.21-1.87\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.06-3.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.5(1 \mathrm{H}$, br s, $\mathrm{NH}), 6.58-6.71(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.13-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53-$ $7.66(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.80-7.84(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.08-8.12(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $8.63-8.75$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

References

1 A. Sugimoto, K. Sumi, K. Urakawa, M. Ikemura, S. Sakamoto, S. Yoneda and Y. Otsuji, Bull. Chem. Soc. Jpn., 1983, 56, 3118.
2 K. Mizuno, C. Pac and H. Sakurai, Bull. Chem. Soc. Jpn., 1973, 46, 3316; for a recent review on the bond cleavages of aryl halides by
photoinduced electron transfer, see F. D. Saeva, Top. Curr. Chem., 1991, 156, 59.
3 E. J. Greenhow, D. McNeil and E. N. White, J. Chem. Soc., 1952, 986. 4 R. A. Bartsch and T. A. Shellly, J. Org. Chem., 1973, 38, 2911.
5 N. J. Bunce and J. C. Gallacher, J. Org. Chem., 1982, 47, 1955; K. Hamanoue, S. Tai, T. Hidaka, T. Nakayama, M. Kimoto, H. Teranishi, J. Phys. Chem., 1984, 88, 4380; for photoinduced $\mathrm{S}_{\mathrm{RN}^{1}}$ reaction mechanisms, see R. A. Rossi and J. F. Bunnett, J. Org. Chem., 1973, 38, 1407.

Paper 2/03458A
Received 30th June 1992
Accepted 10th August 1992

[^0]: * This procedure is applicable to the preparations of $\mathrm{Ar}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{Br}$ ($\mathrm{Ar}=9$-phenanthryl, $n=3-10$ and $12 ; \mathrm{Ar}=9$-anthryl, $n=6 ; \mathrm{Ar}=$ 1-naphthyl, $n=6 ; \mathrm{Ar}=2$-benzo $[b]$ thienyl and 2 -naphthyl, $n=7$). $+\delta_{\mathrm{H}} 7.55-7.66(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05-8.08(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.42-8.45(1$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.58-8.65(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $2.91(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

[^1]: * WARNING: Benzene is hazardous to health, although it is a good

